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SUMMARY 

The paper presents a generalization of the classical L2-norm weighted least squares method for the numerical 
solution of a first-order h erbolic system. This alternative least squares method consists of the minimization of 
the weighted sum of the L residuals for each equation of the system. The order of accuracy of global conservation 
of each equation of the system is shown to be inversely proportional to the weight associated with the equation. 
The optimal relative weights between the equations are then determined in order to satisfy global conservation of 
the energy of the physical system. 

As an application of the algorithm, the shallow water equations on an irregular domain are first discretized in 
time and then solved using Laplace modification and the proposed least squares method. 

Y P .  
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1. INTRODUCTION 
While there are a number of different least squares formulations for solving boundary value problems, 
they may be generally classified into three groups. 

In the first group the partial differential equation is transformed into an optimal control problem via 
the introduction of a state function, the solution of a given state equation. This equation is generally 
discretized using a Galerkin finite element approximation. The least squares solution algorithm 
employs a conjugate gradient method. Conservation of mass and satisfaction of boundary conditions 
are assured by requiring the state vector to belong to a suitable Sobolev space.',' 

In the second group the least squares approximation is combined with the Galerkin finite element 
method to obtain convergent finite element approximations. An example of this type of method is the 
Galerkin least squares method developed by Hughes et al.3 In this approach the least squares form of 
the residual is added to the Galerkin method in order to stabilize the Galerkin method without 
degrading accuracy. 

In the third group the mathematical form of the approximate solution (trial solution) is first chosen 
and then the norm of the corresponding residual is minimized by least s q ~ a r e s . ~  This is the approach 
addressed in the present paper. 

A collocation L2 least squares formulation is proposed herein which takes into account in an optimal 
way the relative weights identified with the different equations of the system. While the methodology 
developed in this paper may be applied to various types of partial differential equations, herein the 
solution of a first-order hyperbolic system generally denoted as the shallow water equations is 
considered. 
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After a brief review in Section 2 of numerical methods for solving first- order systems of partial 
differential equations, basic definitions and mathematical properties of the weighted least squares 
method are discussed in Sections 3 and 4. The absence of global conservation properties of the 
classical least squares formulation leads to a new method proposed in Section 5 and applied to the 
solution of the shallow water equations in Section 6. 

2. NUMERICAL METHODS FOR FIRST-ORDER SYSTEMS 

Let R be a bounded domain in the (x, y )  plane with boundary r. 
The vector n = ( n x ,  ny) is the outward unit normal to r. 
The first-order system of coupled equations considered in this work may be written as 

au a u  
LU A- + D- + CU = f ,  

ax ay 

with the boundary condition 

BU (An, + Dny - M)u = g. 

A, D, C and M are p x p matrix-valued functions, the column vector forcing term is 
fT = c f i , f i ,  . . . , f , ) ,  gT = (g,, g2, . . . , gpb) is the column vector of applied boundary conditions and 
the unknown column vector is uT = (u , ,  u2, . . . , up) ( T  denotes transposition). L represents the linear 
differential operator defined in the domain R and B represents the boundary differential operator. 

Sufficient conditions for problem (l), ( 2 )  to have a unique strong solution have been obtained for 
symmetric positive systems in the sense of Friedrichs.’ 

Numerical approximations of pure hyberbolic problems have been extensively studied. Different 
schemes based on finite difference and Galerkin finite element approximations have been proposed for 
the solution of linear and non-linear hyperbolic equations and first-order systems (see Reference 6 for a 
review). 

A perceived disadvantage of the least squares method compared with the Galerkin method is the 
higher-order finite element continuity requirement. However, for basis hnctions defined on 
rectangular subspaces, such as in the case presented herein, these continuity conditions are easily 
accommodated and higher-order accuracy and function continuity are achieved. These higher-order 
continuity constraints may be circumvented by expressing higher-order equations as sets of lower- 
order equations, although additional field variables are thereby introduced. 

The standard Galerkin method leads to ‘central-type’ discrete operators which exhibit oscillatory 
behaviour on practical meshes. A way to avoid this difficulty is to select a test function for the 
convective term that explicitly accommodates the directional property of the hyperbolic propagation 
(upwinding). Such methods are often denoted as Petrov-Galerkin methods. The main drawback of this 
approach is the absence of a generally applicable systematic procedure for the selection of the test 
function. Recently the Lax-Wendroff scheme has been used for developing the Taylor-Galerkin 
method. In addition, the method of characteristics has been used for developing the Galerkin method. 

Finite element methods for solving first-order systems which are symmetric and positive in the sense 
of Friedrichs have been proposed by Lesaint and R a ~ i a r t . ~  For symmetric systems arising out of the 
heat equation, Aziz and Liu8 proposed a weighted least squares solution method. In their work a 
unique weight associated with the boundary conditions was determined in order to reduce the error 
estimates. 

For mixed methods based on splines, the least squares theory for second-order elliptic systems 
developed in Reference 9 specifies the optimal weights in terms of the spline mesh size. Other first- 
order systems have also been solved numerically using a weighted least squares formulation where 
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optimal weights are found theoretically. For example, Wendland" formulates a least squares method 
for strong elliptic systems satisfying the Lopatinsky conditions for the boundary operator. For elliptic 
operators in the sense of Douglis and Nirenberg, wherein the operator satisfies the supplementary 
condition for the operator L and the complementary conditions for the boundary operator B, a 
weighted least squares method has been proposed by Aziz et al." 

A difficulty appearing in the implementation of the method, and one that is addressed in this paper, 
is the determination of the weights associated with the least squares method for a general first-order 
system. In most numerical implementations these weights must be specified by the ana ly~t .~  Without 
some rational criteria for selecting these weights, the efficiency of the method may be seriously 
affected even if other computational objectives are achieved. 

The formulation proposed herein is similar to the least squares finite element method proposed by 
Jiang and Carey for linear and non-linear hyperbolic  system^.'^-'^ However, the method differs in as 
much as collocation points and weighting functions are introduced. 

As noted earlier, the least squares method is validated on the two-dimensional shallow water 
equations. These equations are oilen used to obtain flow fields necessary for pollution problems and 
transport in shallow estuaries. A special advantage of using the collocation least squares method for 
solving the shallow water equations is the ability to solve the equations in an irregular domain with a 
completely orthogonal computational mesh. l 5 , l 6  This significantly enhances both the accuracy and 
computation time. 

When the non-linear terms appearing in these equations are linearized, they reduce to a system of 
first-order equations. Classical collocation least squares has good noise control characteristics 
compared with the Galerkin method when solving the shallow water equations. However, one of the 
difficulties inhibiting its widespread use is that the accuracy of the solution depends upon the weights 
appearing in the formu1ation.l6 

3. A WEIGHTED LEAST SQUARES METHOD 

A least squares formulation is proposed herein which takes into account the relative weights between 
the different first-order equations appearing in the system. The least squares formulation is presented in 
terms of the matrix of differential operators L and B defined in equations (1) and (2). These equations 
may be written as 

Lu = f in R, B u = g  on r. (3)  
In order to formulate the method proposed, let us now define the functional spaces and their 

associated norms. In the following we define the working space Vg as the p-product of the Sobolev 
space H'(Q): 

V, =H'(R) x H y Q )  x " '  x H ' ( Q )  = [H'(R)]P, 
\ d 

Y 

p times 

I H'(R) = { v E P ( Q ) ; -  E 2(Q);- E L*(Q) 
8 V  d V  

d X  8Y 

(4) 

Notice that each element u E Vg is a vector of p components ui, i = 1, 2,  . . . , p. 

may be defined on the domain 0 and the boundary r as 
If for any u E V, and v E V,, u . v denotes the classical scalar product on Rp, an L2 scalar product 

(u, v) = IQ u .  vdQ, [u, v] = Ir u . vdr.  ( 5 )  
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In the following, 11 . Iln denotes the norm associated with (., .) and 1 1  . Ilr denotes the norm associated 
with [., .I. 

The L2 weighted least squares formulation proposed in this work may be separated into two 
groups. 

Group 1. L2 continuous least squares 

interior domain and an L2 (T)-type norm for the boundary conditions: 
This formulation corresponds to a minimization problem with the choice of an L2 (R)-norm for the 

Min T(v) = (Lv - f ,  W(LV - f ) )  + [Bv - g, P(Bv - g)] 
(V€ V&?) 

1 

where W and P represent the diagonal matrices of positive weights associated respectively with each 
equation of the system (w;) and each boundary condition (pi). 

In practice, problem (6) is never solved on a functional space of infinite dimension. A 
finite-dimensional approximation of problem (6) is generally solved by restricting the above 
functional to be on a finite-dimensional subspace of V.. One such approach is based on finite 
element approximations. 

With this approach the discretization procedure may be formulated as follows. 
The closed domain R is approximated by a polygonal domain R h  with a standard triangulation Fh 

The Sobolev space H' (32) is then approximated on y h  by 
of Oh, i.e. Fh is a set of finite elements E." 

H;(Rh)  = {VhIVh E c"(%); VhiE E p1, E Y h } ,  (7) 

where P I  is the space of polynomials in two variables of degree less than or equal to one. In the 
treatment of parabolic problems written in terms of second-order operators, the least squares procedure 
requires a space of polynomials which are at least P2. In this case the Hermite interpolation functions 
are generally used for the interpolation over a single element.6"7 

The space vh ,  the approximation of Vg, is then defned as thep-product of H i ( s 2 h ) .  Each component 
vhj  of the vector function v h  E Vh may be written in terms of the global interpolation hnction defined 
as 

4b) E c " ( f i h ) ,  (9) 

where N i  is the total number of unknowns for the function vJ{x). 

functions and the vector of unknown parameters, a', as 
Formally, any function vhj  E Hi(Rh) may be written in terms of the vector of global interpolation 

NT 
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where NT is the number of unknowns on the element E. The independent space variable of the domain 
is represented by x. The L2 approximate continuous least squares formulation consists of the 
minimization of a functional Zc(a, W, P) containing a weighted sum of the interior and boundary 
residuals with respect to the unknown vectors a'. 

The interior residual RLi corresponding to the ith equation of the system and the boundary residuals 
RBi corresponding to the ith boundary condition are defined by 

Consider now the global unknown vector a formed by the set of all the vectors a', j = 1, . . . , p .  The 
objective fimction Zc(a, W, P) to minimize may be defined as 

The approximate L2 continuous least squares formulation corresponding to equation (6) may be 
defined as 

In this general framework an error analysis of the least squares approximation has been conducted 
for particular problems in fluid  dynamic^.',^,^,'^ The choice of a suitable norm 1 1  . on Vg depends 
on the type of differential operator. For example, the choice of an H1-norm instead of the 
classical L2-norm stabilized the least squares solution of non-linear hyperbolic problems which 
generate  shock^.'^ 

Group 2. L2 collocation (or discrete) least squares 

The discrete formulation corresponding to the continuous least squares method, also called 
collocation least squares, consists of selecting a series of collocation points inside the domain and on 
the boundary and minimizing the hnction 

The points x I  for 1 = 1, . . . , k correspond to the interior points and for 1 = k+ 1, . . . , m to the 
boundary points of 0.4 The weights q are associated with the collocation points. One of the difficulties 
appearing in the implementation of the method is the determination of the weights wi,  i = 1, . . . , p, the 
weights p i ,  i = 1, . . . , p ,  and the weights q,  1 = 1, . . . , m. 

The addition of the integral of the boundary residual may result in a solution vector with large 
interior residuals. This scaling problem may degrade the satisfaction of the governing balance laws. 
This is particularly true when the weights appearing in the matrix P are very large. 
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Basically, the three types of weights introduced (wi, pi and q) are each of a different nature. The first 
and second types of weights, wi, i = 1, . . . , p ,  and p i ,  i = 1, .. . , p b .  determine the relative 
contributions of the interior and boundary residuals. When a system of equations is solved using an L2 
least squares method, these weights will balance the different contributions of each equation and each 
boundary condition. These weights are generally specified by the analyst. 

The third type of weights, cI.  i = 1, . . . , m, represent the distribution of weights among the 
collocation points. These weights may be determined by using optimal criteria for numerical 
integration, such as Gaussian quadrature. For a collocation least squares method using finite element 
discretization, the use of Gaussian points and their weights leads to an optimal truncation error. More 
sophisticated criteria have been proposed by the authors.’’ 

In the present work we concentrate on the first and second types of weights and a general 
methodology is developed for computation of the optimal values of these weights. 

4. PROPERTIES OF THE L2 LEAST SQUARES 

In the least squares literature two different methods have been proposed for computing the numerical 
solution of the minimization problem (problem (1 3) here). The first consists of using an unconstrained 
optimization algorithm for the quadratic functional I, or Z,. Classical methods such as conjugate 
gradient or quasi-Newton generally require the computation of both a hnctional and its Jacobian. The 
second approach consists of solving the normal equation coresponding to a first-order necessary 
condition for a minimum of the functional. 

In the present work we deduce the normal equation from the multidimensional minimization 
problem (equation (6)) rather than from the finite-dimensional problem as is usually done. Then we 
discuss the basic properties of the least squares method. 

The following theorem gives a necessary condition for a minimum for the least squares and 
approximate least squares methods. 

Theorem 1 

If U, resp. uh , is the vector solution of the minimization problem (6), resp. (1 3), then for all v E V,, 
resp. v h  E vh . 

(LG - f ,  ~ ( L v ) )  + [BG - g, P(Bv)] = 0, 

(Luh - f ,  w(Luh)) + [BUh - g, P ( B v ~ ) ]  = 0. 

(15) 

(16) 

Proof Consider the least squares functional J(v) = (Lv - f, W(Lv - f)) + [Bv - g,P(Bv - g)]. If 
U is a solution of equation (1 5) ,  then Vv E V, 

J(U + tv) - J(U) 
lim 2 0. 
1-0 t 

The Taylor expansion of J ( U  + tv) may be written as 

J(U + tv) = J(U) + t{(LG - f ,  ~ ( L v ) )  + [BG - g, P(Bv)]} + O(t2) .  

Then for all v E V, and for t > 0 the above limit leads to 

(LG - f ,  ~ ( L v ) )  + [BG - g, P(Bv)] 2 0. 

Taking now -v instead of v in the last inequality, we see that we obtain (15). 
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The same proof may be developed for the approximate least squares problem (equation (1 6)). 

Equation (1 6) may be written as a linear system of algebraic equations with unknown vector a. The 
solution vector uh and the weighting function vector vh may be expressed in terms of their components 
as 

uhj(x) = [w(x)]d,  %j(X) = L@'(x)J&. (19) 
Equation (16) may be written in terms of the components of the differential operators L and B as 

Let us assume that for any j = 1, . . . , p the dimension of the column vector a' is independent of j 
and equals D. Introduce now the fl x php matrices Y' and the two multipliers LXx) and 
Bi(x) defined as 

With this notation equation (1 6) may be written in matrix form as 

where the matrices Ai and Bi and the vectors fi and gi are defined for continuous least squares as 

Lf(x)Li(x)dx, B; = bT(x)bi(x)dx, fi = LT(x)fidx, gi = J, bf(x)g;dx 

(23) 
and for collocation least squares as 

(24) 
Equation (22) is valid for any vector d and may therefore be written in the classical form of the normal 
equation, i.e. 

Without loss of generality, equation (25) may be scaled such that the first weights wI will be equal t 
one. Defining the new weights ei = l/wi, i = 2, . . . , p,  and vj = l/wj, j = 1, . . . , Pb, equation (25) may 
now be expressed as 



198 D. G.  ZEITOUN, J. F! LAIBLE AND G .  F. PMDER 

The choice of the optimal relative weightings depends on the criterion of optimality defined. For the 
numerical least squares method presented in this contribution, these criteria may be separated into four 
categories: 

(a) accuracy of the numerical scheme 
(b) numerical stability of the linear system resulting from the normal equation (25) 
(c) satisfaction of the boundary conditions 
(d) conservation of the mass balance. 

The dependence of the weighting on the overall accuracy of the numerical scheme is still a subject of 
research. Error estimates using different norms on suitable Sobolev spaces have been derived by 
several authors for the penalty method (see e.g. Reference 9). Compared with our formulation, the 
classical penalty method corresponds to a system with two equations and a single weight. The optimal 
weight is chosen for the reduction of the error estimation. This weight depends on the type of partial 
differential equation, the discretization parameter and the type of boundary conditions. Such analysis 
shows that a better theoretical error estimate is obtained when the weight is reduced. 

It is well known that for a large weight the condition number of the normal equation resulting from 
the penalty least squares method depends linearly on this weight.' According to this criterion, one has 
to increase the weight for a good stability of the normal equation. 

Thus the weighting strategy for criterion (a) is the opposite of that for criterion (b). 
Among the basic properties we may require from a numerical method, global conservation of the 

system is of primary imp~rtance.~ This property depends on the physical problem to be solved and on 
the type of differential operator. It may be stated that the flux, the energy or the forces will be 
conserved globally inside R. For the first-order hyperbolic system considered here, the global 
conservation property may be written for each equation of the system as follows: 

The global conservation property is not always satisfied by the numerical solution of the weighted 
least squares formulation presented herein. On the basis of Lagrangian multiplier functions, the 
order of accuracy of the global conservation property is analysed. The following theorem presents 
an error estimate for the global conservation property for each equation of the first-order 
system. 

Theorem 2 

If a is the vector of dimension plv" which is the solution of equation (26), then we have the 
following. 

(i) For the continuous least squares method the following properties hold: 

Pb 
f o r i =  1 ,..., pb, ~ B i j u ~ - g i = D i v i + O ( v ~ ) .  

j =  1 
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(ii) For the collocation least squares method the following properties hold: 

Here the function H,(x) does not depend on and Di does not depend on vi 

Prooj The proof is developed in the Appendix. 0 

For first-order systems a rigorous study of the dependence of the weights on the accuracy of our 
least squares formulation is outside the scope of this contribution. However, Theorem 2 points out the 
difficulty in choosing the relative weights appearing in the least squares functional between the 
different equations. 

In terms of global mass balance conservation, the weighting strategy is to increase all the weight 
appearing in equations (28) and (29). However, in terms of conditioning of the matrix, the weighting 
strategy is to reduce these weights. For a given equation (i) the choice of a small value for one of the ci, 
i = 2, . . . , p, will improve the global conservation property for this equation. A good strategy should 
be to choose large weights for each equation, but unfortunately this will cause ill conditioning in the 
linear system of equations (26). 

So far the goal of Theorem 2 and the above discussion was to justify the need for the definition of a 
strategy of optimal weighting. 

In the following a criterion of optimality based on energy balance considerations is introduced for 
the computation of these weights. 

The optimal weights are those for which the corresponding least squares solution respects more 
accurately the mechanical energy balance of the system. This balance equation corresponds to the 
natural proportions between the different equations. 

For the first-order hyperbolic system considered here, one may require a conservation property of 
the type 

which may be written in a functional form as 

Oa(v) = 0. (31) 

The property of global conservation is implicitly verified in the Galerkin method but is not respected 
by the formulation (6). 

The basic idea of the new least squares formulation proposed is to determine the optimal set of 
weights wi.  i = 1, . . . , p, and p i ,  i = 1, . . . , p, in order that the least squares solution will respect 
approximately the global Conservation law Ya(v) = 0. In the case where Y a ( v )  is a positive function, 
the determination of the optimal set of weights may be achieved by minimizing the function Y,(v) with 
respect to the weights. 
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5 .  OPTIMIZATION ALGORITHM 

5.1. General methodology 

The basic steps of the methodology proposed are as follows. 
Consider after k iterations the set of known weights W k  and pk. 

Step 1. Determine uh(x, Wk, Ps = ArgMin J(v), the solution of the minimization problem (6). 

Step 2. For a positive function Ya(v), determine the new matrices with positive coefficients, W(@l) 
and P(k+l), which are obtained via solution of the minimization problem with respect to the weights: 

MinY,(uh, W(k+l), P@+')) (wi > 0; p ;  > 0; i = 1, . . . , p ) .  

Step 3 

If I @ \ E a ( ~ h ,  W(k+'), P(kf*))l < E then END 
If not 

GO TO Step 1. 

In the next section the algorithm developed for the solution of the shallow water equations is 

Set Wk = W(k+l) and pk = P(k+lf 

presented. 

5.2. Methods and procedures 

Here we describe the process for determining the weights used in the present least squares method. 
An associate norm derived from an auxiliary finite element formulation is first computed. Then the 
weights are determined in order to force the auxiliary norm to a minimum. In the following we will 
need to distinguish between the discretized form of the differential equations as derived from the least 
squares method and the discretized form of the differential equations as derived by some other finite 
element procedure. We will denote the discretized least squares formulation equation (25) as 

A x - f = O ,  (32) 

where 

P P 

A = C ( w i A i  +pjBj),  x = a, f = C ( w i f i  + pigi) 9 (33) 
i= 1 i= 1 

and the discretized auxiliary formulation as 

Aaxa - fa = 0. 

One possible auxiliary norm may be defined as 

(34) 

where x(S) represents the least squares solution for a given set of weights S = (s1, s2, . . . , SZ,) = 
(wl, w2, . . . , w,, p l ,  . . . , p,) and T denotes the transposed vector. Notice that x(S) is not the solution 
of the auxiliary formulation. Since A and fare dependent on the weights used in the least squares 
formulation, x is also a fbnction of the weights. Our minimization probIem may thus be 
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stated as 

Min @,(x(S))subject to A(S)x(S) - f(S) = 0, si > 0. 
SI C2,... ,SZn 

Here we detail a procedure to solve this problem and contrast this approach with the well- 
known Newton-Raphson and quasi-Newton methods. Consider a first-order Taylor expansion of x(S) 
around S: 

@a = [A,(x + Vsx . (AS)) - fa] . [Aa(x + Vsx . (AS)) - fa] + o(llAS112), (37) 
where T,x represents the gradient vector of the vector x with respect to the weights (also called the 
sensitivity matrix). Applying the minimization criterion aYa/aAS = 0 as in a least squares problem, 
we obtain 

[GTAzAaG](AS) = -[GTA:]{Aax - fa}, 

where G = T,x is the sensitivity matrix. This matrix is obtained by differentiation with respect to each 
weight si of the least squares equation: 

a -[AX - f]. asi 
Expanding this last equation and solving for dxldsi yields 

ax 
g. ' = - asi = A-'{ - k]~}. 

(39) 

The sensitivity matrix G is thus defined as G = [g, (g2(g,( - + a  lg,,], where n is the number of weights. 
The steps of the procedure are as follows. 

1. Assume a set of weights S. 
2. Solve Ax-f= 0. 
3. Employ equation (40) to obtain G. 
4. Form and solve equation (38) to obtain AS. 
5. If IlASll < end; else S"" = So'd+a{AS} and go to step 2. 

Alternatively one may expand Ya around the vector So by Taylor's theorem to obtain 

@a = @,(So) + Vs(@a) . {AS}  AS} . H~{AS} + ~ ( I I A s I ~ ~ ) ,  (41) 

where H, is the Hessian matrix of Ya with respect to the weights and AS = S - So. The minimum of 
Ya is obtained from aYa/aAS = 0. This yields 

Hs{AS} = -Vs(@a) = GTAT[A,x - fa] (42) 
This last equation is the basis for the second-order Newton-Raphson methods. It can be shown that the 
exact expression for the second-order derivatives is 

where [[aC/aS]] is a third-order tensor. For the problem under consideration this tensor can be 
determined analytically but not without considerable computational expense. To improve on the 
inverse of the Hessian matrix, one can employ the BFGS methods readily available in the IMSL 
Fortran Library. 
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6. HYPERBOLIC SHALLOW WATER EQUATIONS 

Here we discuss a specific case of the general methodology defined in Section 4. The specific 
equations used are the shallow water equations, which may be written in scalar form as 

dv & a\, c b  
- + u-+ v- + -v+fu + g -  - 2 = 0, 
at ax + H + H  

i3C ~(Hu) ~ ( H v )  -+- + - - r = o ,  
at a x  ay 

r - r p  = 0, 

(45) 

(47) 

lxu + 1p = V", (48) 

H = h + ( .  (49) 
The first two equations are the x- and y-momentum equations respectively. The third equation is the 
fluid continuity equation. These equations are valid over the region Q. The fourth equation is a 
prescribed surface elevation to be enforced on a portion 0, of the boundary and the fifth equation is a 
prescribed normal flow to be applied on a portion (D2 of the boundary. The last equation defines the 
total depth. For problems with moving boundaries this equation becomes a third-type boundary 
condition. Here we will restrict our attention to problems of constant geometry. In these equations x 
and y are Cartesian co-ordinates, t is time, g is gravity, f is the Coriolis parameter, Cb is the bottom 
friction parameter, u and v are x and y vertically integrated velocities respectively, [ is the surface 
elevation, h is the water depth from mean sea level, cp is the prescribed surface elevation, v, is the 
prescribed normal velocity, 1, and l,, are the direction cosines of the outwardly directed unit normal on 
the boundary, T, and T~ represent the x- and y-components of the wind shear stress respectively and r is 
the fluid source. The bottom friction parameter may take on various forms and is generally dependent 
on u and v. 

These equations in their full non-linear form have been solved by the least squares method on 
irregular domains developed by Laible and Pinder." Since we wish to use a test problem that has an 
analytic solution, we will focus on the linearized form of these equations. 

Starting with the scalar equations, we now seek to bring the shallow water equations into the form of 
equations (1) and (2). First we note that the continuity equations can be expanded in terms of h and t. 
Inserting the equality H = h + ( into the continuity equation, the following continuity equation may be 
obtained: 

This equation is now in terms of the first-order derivatives of the unknowns u, v and 5. 
Equations (44H46) are non-linear. We now seek to obtain a linearized form. Here we introduce a 

modification (similar to the idea of Laplace modification used to solve problems with time-dependent 
coefficients). This modification is applied to all the non-linear terms of equations (44)-(46). Suppose 
we select some time-invariant characteristic values for u, v and h denoted as U, Vand Hi. These values 
must generally be greater than any anticipated values of u, v and h respectively. The modification is 
accomplished by writing an identity equation for each of equations (44)-(46) containing the non-linear 
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terms. To illustrate the process, we will consider equation (44) and deduce the remaining ‘Laplace- 
modified’ equations. The identity for equation (44) may be written as 

The wind stress term r,/H and Cb are taken here to be independent of u, v and C;, although they could 
also be similarly treated. 

If we now subtract this identity from equation (44), one obtains 

=(U-u)-+(V-v)-+ all (; --- ;)+$ 
a x  ?Y (53) 

This process itself does not introduce any numerical approximations. In the numerical formulation, 
however, the left-hand side now contains a linear operator with constant coefficients. In the solution 
process values of u, v and H are assumed known (from a previous time step or by extrapolation from 
previous values). Therefore the right-hand side will contain known values. After solution for u, v and ( 
the right-hand side is updated and the system solved again. Iteration within a time step is carried out 
until some norm of the variation of u, v and 5 meets a convergence tolerance. In the following we will 
denote the assumed or extrapolated values for u, v and C; on the right-hand side as u*, v* and <* (also 
H* = h + <*). 

Applying this modification to equations (45) and (46), we finally have 

(56) 

where 

au* w t X  

ax  aiy 
k” = (U - u*)- + (V - v*)-+ (2 - Z)U* + H’ 

Fv= 

(57) 

We now introduce the time discretization scheme. The local time derivative term is approximated by a 
backward difference, e.g. &/at x (u’ - u - ) / A t .  The variables u, v, C;, u*, v+ and <* are evaluated at 
an intermediate time between t and t + At by the trapezoidal rule, e.g. u = au+ + (1 - a)u-. Here u+ is 
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at time t + At and u- is at time t. With these approximations we may finally collect all terms 
that multiply u, du/& and as in the standard form of equation (1). The vector u is now 
taken as 

u =  { i}. 
After some rearrangement we find 

al+ al+ 
A, - + D, - + C,U+ = f ,  

d X  ay 
where 

A , =  [I ,“u 71, D , =  a t  a:], 
0 aU 0 ah aV 

c, = 

au- 
aY 

+ Dg- + C ~ U -  

c b  af -+-a 
At H 

0 

0 

ah 
a- 

8X 

The matrices [A]s, [D]b and [C], are identical to [A],, [B], and [C], except that a is replaced by 

The boundary conditions are also written in the standard form (equation (2)) as 
p = (a-1). 

0 0 1  
[n, ny 01(  ;}={;I 

Residuals 

It is now possible to express the residuals of the differential equations and boundary conditions in 
terms of the standard matrices [A], [D], [C] and [MI. Here we use the matrix notation dropping the 
subscript CL. To develop the residuals due to time and space discretization, we now introduce the spatial 
approximations. We introduce basis hnction expansions of our unknowns with local support over 
rectangular finite elements: 
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The vector L4iJ contains the four basic functions for the bilinear rectangular element. The matrix [E] 
is thus a 3 x 12 matrix and {ii} is a 12 x 1 vector of nodal values on an elemental region. 

Substitution of (63) into equation (61) yields the residuals over the domain R, 

and over the boundary r, 

cr = { :=} = [MI[QI{U}+ - {g}. 

Collectively we may write the residuals as 

or equivalently 

{c} = [LB+]{U}+ - [LB-]{U}- - , (64) {i 1 
where {U}+ and {U}- are the vectors of nodal values of the variables at two different time levels and 
[LB+] and [LB-] are the numerical counterparts of the differential operator matrix [LB]. 

The total squared weighted residual is given by 

E2 = c {c}~[S]{C}. (65) 
n,r 

Substitution of equation (64) into equation (65) and application of the minimization criterion 
dE2/d{u}+ = 0 leads to 

[A]+{u}+ - {F} = 0, (66) 
where 

[A]’ = c [LB+]T[S][LBf], (67) 
w- 

[A]- = e [LB+IT[S][LB-], 

6. I .  Test problem description 

The test problem is shown in Figure 1. The quarter-ring domain has a quadratically varying 
bathymetry defined by h = H,/ ,  Ho = hl/rq, hl = 16 m. The surface elevation is prescribed at the 
outer boundary (r = 2) and all other boundaries have a zero-normal-flow condition. The steady state 
numerical and analytical solutions were obtained for an x-directed constant wind loading. The velocity 
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Figure 2. Wind circulation, numerical solution; quadratic bathymeby h = Ho? 



FIRST-ORDER HYPERBOLIC SYSTEMS 207 

Table 1. Norms 
~ ~ ~~ 

Iteration Residual Galerkin Exact Gradient 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

6.515 x 
1.554 x lo-'* 
3.586 x 
6.666 x 
1.254 x lo-'' 
2.578 x lo-'' 
4.691 x lo-" 
7.186 x lo-'' 
9496 x lo-" 
1.279 x lo-'' 

7.225 x lo4 
5.548 x lo4 
4.233 x lo4 
3.315 x lo4 
2.624 x lo4 
2.027 x lo4 
1.582 x lo4 
1.291 x lo4 

9.778 x lo3 
1.102 x lo4 

4.093 x 
2.760 x 
1.646 x 
9.745 x 1 0 - ~  
5.950 x lop7 
3.708 x lop7 
2.558 x lop7 
2.072 x 
1.892 x 
1.821 x lop7 

1.24 x lo7 
1.43 lo5 
2.95 lo4 
1.01 lo4 
2.92 x lo3 
6.97 x lo2 

5.56 x 10' 
1.72 x 10' 
5.17 x 10' 

1.85 x 10' 

Table 2. Weights 

Iteration Wl w2 w3 w4 WS 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 .o 
16.4 
41.7 
86.4 

179.0 
382.6 
7434 

1307.1 
2207.4 
3722.5 

1 .o 
16.4 
42.3 
88.8 

184.9 
393.8 
753.7 

1296.7 
2141.2 
3545.6 

1 .o 
16.5 
43.6 
95.4 

208.3 
465.7 
945.1 

1744.2 
3 100.7 
5502.8 

1 .o 
15.1 
19.6 
23.7 
34.1 
54.8 
80.6 

107.5 
140.4 
187.9 

~ 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

solution is shown in Figure 2. A complete description of this test problem is given in Reference 16 as 
well as the analytic solution adapted from Reference 20. 

There are five weights in this problem. W, and W, are the weights for the x- and y-momentum 
equations respectively. W3 is associated with the continuity equation. W4 and W5 are the weights 
associated with the prescribed < (on r = r2) and the prescribed zero normal flow on the remaining 
boundaries. All weights were set initially to 1.0. The weight W5 (normal flow condition) was fixed at 
1.0 and the optimizatiorn process was carried out to determine Wl-W4 that minimize the auxiliary 
function Yw Tables I and I1 and Figure 3 summarize the results. In Table I the numerical values of 
various norms are listed for each step of the optimization. The residual norm is defined as the L2-norm 
of the vector { e }  evaluated at each of the active domain collocation points and at the boundary 
collocation points. The Galerkin norm is actually the value of Ya as defined by equation (35). The 
values in the exact column are the L2-norm ofthe total error. This is simply the s u m  ofthe squares of 
the difference between the numerical and analytical solutions evaluated at the same points used for the 
residual norm. The gradient norm is the L2-norm of {aQ.,/asi} as defined by the left-hand side of 
equation (42). The four norms are also plotted in Figures 3(a) and 3(b). Owing to their varying 
magnitudes, the values are normalized with respect to the values in the first row of Table I. The 
corresponding weights at each iteration are listed in Table I1 and plotted in Figure 3(c). For this test 
problem the iteration procedure was carried out until the gradient norm was less than lop6 of the initial 
gradient norm. 
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Iteration 
Figure 3. (a) Galerkin norm and total error norm. (b) Least squares residual norm and gradient norm. (c) Weights 
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6.2. Discussion 

The significance of these results is best illustrated by Figure 3(a). We see that weights that reduce the 
Galerkin norm also reduce the exact (total error) norm. It is thus apparent that in the absence of any 
knowledge of an analytic solution we can rely on the Galerkin norm as a guide to decreasing the total 
error of the solution. The importance of this result is hrther appreciated by considering Figure 3(b), 
where it can be seen that the L2 residual norm of the least squares method is actually increasing as the 
solution becomes more accurate. Figure 3(c) reveals that although the total error can be reduced by 
minimizing the Galerkin norm, the weights continue to increase ({ Asi} becomes constant) while the 
gradient {a@,,/asi} approaches zero. This implies that the second derivatives are zero and that we are 
approaching a plateau of neutral stability. The selection of weights larger than those that mark the 
onset of this plateau has a negligible affect on the numerical solution. At the extreme condition of very 
large weights, however, it is conceivable that ill conditioning may cause the solution to begin to 
degenerate. 

7. CONCLUSIONS 

An alternative least squares method for the solution of a first-order system of partial differential 
equations has been presented. The new feature of the method is a systematic methodology for the 
determination of the optimal weights appearing in the weighted least squares method. 

The results obtained for the solution of the two-dimensional shallow water equations show a 
superiority of the new approach when compared with the classical least squares and Galerkin methods. 

APPENDIX: PROOF OF THEOREM 2 

Symbols and notations introduced in Section 4 are used in this appendix. 
The proof consists of a comparison between two minimization problems. The first optimization 

problem does not involve weights and may be formulated as follows. Find the vector solution a,, of 
dimension php  of the minimization problem 

Min [RL(a, x)I2dn J, 
subject to Li(x)a -5 = 0, 

subject to Bl(x)a - gr = 0, 
i = 2 , .  . . , P ,  
1 = 1, .  . . ,pb 

(problem a), 
where &(a,@ is defined as the residual of the first equation: 

The second minimization problems corresponds to the penalty formulation of problem 
formulated as 

and may be 

(problem R,). 
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For the continuous least squares formulation p represents the measure associated with the volume 
integral on R. 

The proof of Theorem 2 requires the introduction of the Lagrangian multipliers pe , ,  p , ,  p j  and 
finally pbl. This is the purpose of Lemmas 1 and 2; then Theorem 2 will result fiom the relationship 
between these Lagrangian multipliers. 

Lemma 1 

Problem Qh admits a unique solution ap characerized by the existence of Lagrangian multipliers pi, 
j = 2, , . . , p, and pbl = 1, . . . , pb, such that 

Li(x)a -J; = 0, i = 2,. . . ,p,  BI(x)a - gl = 0, 1 = 1, .  . . ,pb. 

Proof: The interior residual appearing in problem Qh may be written in terms of the scalar product 
on [ w P ~  as 

[&(a, X)l2  = (LT(x)L1(x)a, a) - 2(LT(xK(x), a)  +f2(x). (74) 
The last temf:(x) does not depend on a, so problem Q h  is equivalent to the minimization problem 

(LT(x)Ll (x)a, a)dx - 2 

(75) subject to Li(x)a -J; = 0, x E R, i = 2,.  . . ,p,. 
subject to Bl(x)a - g1 = 0, x E r, 1 = 1,. . . ,pb, 

(problem g,). 
The quadratic minimization problem Qk admits a unique solution ap characterized by the existence of 
multipliers pJ{x), j = 2, . . . , p,  and pb,, 1 = 1, . . . , pb, such that equation (73) is satisfied.' 

Lemma 2 

Problem R,, admits a unique solution sic characterized by the existence of the Lagrangian multipliers 
pe, such that 

Proof: Define the objective function of problem R,, as 

(77) 
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The function a--tf(a, cl, €2, ..., cp, vl, ..., vpb) defined fiom R@(D+lr-pb)+R is a differentiable 
function, so the first-order condition for a minimum corresponds to a null differential at the solution a. 

After differentiation one can easily get 

By defining pCi as in (76), equations (76) may be easily found from equation (78). 0 
By virtue of the implicit function theorem, it may be shown that the vectors p E  (x,  c)  and the a, are 

analytic functions of the variables cj, j = 2, . . . , p .  This last property permits one to prove the 
following lemma. 

Lemma 3 

Let aE and p., be the solution vectors associated with equations (76) and let ap andp, be the solution 
of equations (73). Then, if p s  depends on cj only (j = 2, . . . , p )  and pb, depends on vj only 
(j= 1, . . . , p  b), 

(79) 
P ~ , ( x )  -pi(.) = 4 ( x ) c j  + o($), j = 2,.  . . ,P ,  

pbV,(x) -pbr(x) = Di(x)vr + ~ ( v : ) ,  1 = 1,. . . ,pb,  

where Q(x) and Hj(x) are functions independent of the penalty parameters v1 and c, respectively. 

Pmof 

By virtue of the uniqueness of the solution of problem Q,,, one can easily see that p~,{x) and pbvdx) 
verify equations (73) and therefore p&) = p,{x) and pb&) = pbl(x). Define now pr,ix) = H,{x) and 

0 
The last lemma permits us to express the Lagrangian multiplier vectors p,, (x), j = 2, . . . , p ,  in terms 

pbll(x) = Ddx). Lemma 3 is proved. 

of the penalty weights c, and to express pb, (x), j = 1, . . . , pb, in terms of the penalty weights v,: 

The last equation finishes the proof of Theorem 2 for the continuous case. For the collocation case 
the proof is similar, only the measure p has to be changed in terms of the set of collocation points xi, 
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i = 1 ,  . . . , k, for the interior collocation points and x i ,  i = k +  1, . . . , m, for the boundary collocation 
points: 
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